Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Braz J Microbiol ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551766

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is widely recognized as a causative agent for various infections acquired in healthcare settings as well as in the community. Given the limited availability of effective antimicrobial agents to combat MRSA infections, there is an increasing need to explore alternative therapeutic strategies. This study aimed to assess the antimicrobial, anti-adhesive, anti-biofilm properties, and toxicity of 175 newly synthesized compounds, belonging to seven different classes, against MRSA. Initially, the compounds underwent screening for antimicrobial activity using the agar diffusion method. Subsequently, active compounds underwent further evaluation to determine their minimum inhibitory concentrations through microdilution. Anti-biofilm and anti-adhesive properties were assessed using the crystal violet method, while toxicity was tested using the alternative infection model Galleria mellonella. Among the tested compounds, two xanthenodiones exhibited the most promising activities, displaying bactericidal effects along with anti-adhesive and anti-biofilm properties. Moreover, the observed non-toxicity in G. mellonella larvae suggests that these compounds hold significant potential as alternative therapeutic options to address the escalating challenge of MRSA resistance in both hospital and community settings.

2.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38444193

ABSTRACT

AIM: This study aimed to compare and characterize the resistance profile and the presence of extended-spectrum beta-lactamase (ESBL) related genes in Escherichia coli isolated from healthy finishing pigs fed with or without antibiotics in their diets. METHODS AND RESULTS: A total of 27 ceftiofur-resistant E. coli isolates were obtained from 96 healthy pigs. The antibiotic resistance profile was tested, and all 27 isolates were classified as multidrug-resistant (MDR). A high proportion of isolates were resistant to cephalosporins, ampicillin, ciprofloxacin, and tetracyclines. The ESBL production was observed in 85% of isolates by double-disc synergy test. The MDR-E. coli isolates harbored ESBL genes, such as blaTEM, blaCTX-M-1, blaCTX-M-2, and blaCTX-M-8,25. In addition, other antibiotics resistance genes (ARGs) were also detected, such as sul2, ant(3″)-I, tetA, and mcr-1. The mobilization of the blaCTX-M gene was confirmed for nine E. coli isolates by conjugation assays. The presence of blaCTX-M on mobile genetic elements in these isolates was demonstrated by Southern blot hybridization, and the resistance to cephalosporins was confirmed in the transconjugants. Our results indicate the prevalence of CTX-M-producing E. coli strains harboring mobile genetic elements in the normal microbiota of healthy pigs. CONCLUSIONS: These findings highlight the significance of ESBL genes as a global health concern in livestock and the potential spread of antimicrobial resistance to other members of the gastrointestinal tract microbiota.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Swine , Livestock , Prevalence , beta-Lactamases/genetics , beta-Lactamases/metabolism , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Plasmids
3.
J Appl Microbiol ; 135(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38323496

ABSTRACT

AIM: The objective of this study was to investigate the antimicrobial resistance genes (ARGs) in plasmids of Enterobacteriaceae from soil, sewage, and feces of food-producing animals and humans. METHODS AND RESULTS: The plasmid sequences were obtained from the NCBI database. For the identification of ARG, comprehensive antibiotic resistance database (CARD), and ResFinder were used. Gene conservation and evolution were investigated using DnaSP v.6. The transfer potential of the plasmids was evaluated using oriTfinder and a MOB-based phylogenetic tree was reconstructed using Fastree. We identified a total of 1064 ARGs in all plasmids analyzed, conferring resistance to 15 groups of antibiotics, mostly aminoglycosides, beta-lactams, and sulfonamides. The greatest number of ARGs per plasmid was found in enterobacteria from chicken feces. Plasmids from Escherichia coli carrying multiple ARGs were found in all ecosystems. Some of the most abundant genes were shared among all ecosystems, including aph(6)-Id, aph(3'')-Ib, tet(A), and sul2. A high level of sequence conservation was found among these genes, and tet(A) and sul2 are under positive selective pressure. Approximately 62% of the plasmids carrying at least one ARG were potentially transferable. Phylogenetic analysis indicated a potential co-evolution of Enterobacteriaceae plasmids in nature. CONCLUSION: The high abundance of Enterobacteriaceae plasmids from diverse ecosystems carrying ARGs reveals their widespread distribution and importance.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Animals , Humans , Enterobacteriaceae/genetics , Anti-Bacterial Agents/pharmacology , Phylogeny , Ecosystem , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Escherichia coli/genetics
4.
Front Microbiol ; 14: 1291930, 2023.
Article in English | MEDLINE | ID: mdl-38075857

ABSTRACT

Extracellular vesicle (EV) production by bacteria is an important mechanism for microbial communication and host-pathogen interaction. EVs of some bacterial species have been reported to contain nucleic acids. However, the role of small RNAs (sRNAs) packaged in EVs is poorly understood. Here, we report on the RNA cargo of EVs produced by the pig pathogen Actinobacillus pleuropneumoniae, the causal agent of porcine pleuropneumonia, a disease which causes substantial economic losses to the swine industry worldwide. The EVs produced by aerobically and anaerobically grown bacteria were only slightly different in size and distribution. Total cell and outer membrane protein profiles and lipid composition of A. pleuropneumoniae whole cell extracts and EVs were similar, although EVs contained rough lipopolysaccharide compared to the smooth form in whole cells. Approximately 50% of Galleria mellonella larvae died after the injection of EVs. RNAseq, RT-PCR, protection from nuclease degradation, and database searching identified previously described and 13 novel A. pleuropneumoniae sRNAs in EVs, some of which were enriched compared to whole cell content. We conclude that A. pleuropneumoniae EVs contain sRNAs, including those known to be involved in virulence, and some with homologs in other Pasteurellaceae and/or non-Pasteurellaceae. Further work will establish whether the novel sRNAs in A. pleuropneumoniae EVs play any role in pathogenesis.

5.
Front Microbiol ; 13: 1017278, 2022.
Article in English | MEDLINE | ID: mdl-36267174

ABSTRACT

The RNA chaperone Hfq promotes the association of small RNAs (sRNAs) with cognate mRNAs, controlling the expression of bacterial phenotype. Actinobacillus pleuropneumoniae hfq mutants strains are attenuated for virulence in pigs, impaired in the ability to form biofilms, and more susceptible to stress, but knowledge of the extent of sRNA involvement is limited. Here, using A. pleuropneumoniae strain MIDG2331 (serovar 8), 14 sRNAs were identified by co-immunoprecipitation with Hfq and the expression of eight, identified as trans-acting sRNAs, were confirmed by Northern blotting. We focused on one of these sRNAs, named Rna01, containing a putative promoter for RpoE (stress regulon) recognition. Knockout mutants of rna01 and a double knockout mutant of rna01 and hfq, both had decreased biofilm formation and hemolytic activity, attenuation for virulence in Galleria mellonella, altered stress susceptibility, and an altered outer membrane protein profile. Rna01 affected extracellular vesicle production, size and toxicity in G. mellonella. qRT-PCR analysis of rna01 and putative cognate mRNA targets indicated that Rna01 is associated with the extracytoplasmic stress response. This work increases our understanding of the multilayered and complex nature of the influence of Hfq-dependent sRNAs on the physiology and virulence of A. pleuropneumoniae.

6.
Front Microbiol ; 12: 773284, 2021.
Article in English | MEDLINE | ID: mdl-35069478

ABSTRACT

Mobile genetic elements (MGEs) and antimicrobial resistance (AMR) drive important ecological relationships in microbial communities and pathogen-host interaction. In this study, we investigated the resistome-associated mobilome in 345 publicly available Pasteurellaceae genomes, a large family of Gram-negative bacteria including major human and animal pathogens. We generated a comprehensive dataset of the mobilome integrated into genomes, including 10,820 insertion sequences, 2,939 prophages, and 43 integrative and conjugative elements. Also, we assessed plasmid sequences of Pasteurellaceae. Our findings greatly expand the diversity of MGEs for the family, including a description of novel elements. We discovered that MGEs are comparable and dispersed across species and that they also co-occur in genomes, contributing to the family's ecology via gene transfer. In addition, we investigated the impact of these elements in the dissemination and shaping of AMR genes. A total of 55 different AMR genes were mapped to 721 locations in the dataset. MGEs are linked with 77.6% of AMR genes discovered, indicating their important involvement in the acquisition and transmission of such genes. This study provides an uncharted view of the Pasteurellaceae by demonstrating the global distribution of resistance genes linked with MGEs.

7.
FEMS Microbiol Lett ; 367(22)2020 12 14.
Article in English | MEDLINE | ID: mdl-33220681

ABSTRACT

The Núcleo de Estudos em Microbiologia Agrícola (NEMA) is an academic-scientific group created by graduate students in the Post Graduate in Agricultural Microbiology in the Department of Microbiology at Universidade Federal de Viçosa, Brazil. NEMA's purposes include promoting and sharing research and knowledge on microbiology in different fields of application. Here, we will comment on our experience in organizing the Summer School on Microbiology and teaching microbiology to undergraduate students during the program. NEMA offers this annual event to disseminate and stimulate knowledge about microbiology for undergraduate students in a participatory, collaborative and interactive way.


Subject(s)
Microbiology/education , Simulation Training/organization & administration , Teaching/standards , Brazil , Female , Humans , Male , Simulation Training/standards , Universities , Young Adult
8.
Pathog Dis ; 78(9)2020 11 23.
Article in English | MEDLINE | ID: mdl-33095236

ABSTRACT

The RNA chaperone Hfq regulates diverse processes in numerous bacteria. In this study, we compared phenotypes (growth rate, adherence, response to different stress conditions and virulence in Galleria mellonella) of wild-type (WT) and isogenic hfq mutants of three serovars (1, 8 and 15) of the porcine pathogen Actinobacillus pleuropneumoniae. Similar growth in rich broth was seen for all strains except Ap1∆hfq, which showed slightly reduced growth throughout the 24 h time course, and the complemented Ap8∆hfqC mutant had a prolonged lag phase. Differences were seen between the three serovar WT strains regarding adherence, stress response and virulence in G. mellonella, and deletion of hfq affected some, but not all of these phenotypes, depending on serovar. Complementation by expression of cloned hfq from an endogenous promoter only restored some WT phenotypes, indicating that complex regulatory networks may be involved, and that levels of Hfq may be as important as presence/absence of the protein regarding its contribution to gene regulation. Our results support that Hfq is a pleiotropic global regulator in A. pleuropneumoniae, but serovar-related differences exist. These results highlight the importance of testing multiple strains/serovars within a given species when determining contributions of global regulators, such as Hfq, to expression of complex phenotypes.


Subject(s)
Actinobacillus pleuropneumoniae/pathogenicity , Bacterial Adhesion , Host Factor 1 Protein/metabolism , Stress, Physiological , Virulence , Actinobacillus Infections/microbiology , Actinobacillus pleuropneumoniae/classification , Animals , Disease Models, Animal , Gene Deletion , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Host Factor 1 Protein/genetics , Larva/microbiology , Moths/microbiology , Phenotype , Promoter Regions, Genetic , Serogroup , Swine
9.
Pathog Dis ; 78(8)2020 11 11.
Article in English | MEDLINE | ID: mdl-32960263

ABSTRACT

The larva of the greater wax moth Galleria mellonella is an increasingly popular model for assessing the virulence of bacterial pathogens and the effectiveness of antimicrobial agents. In this review, we discuss details of the components of the G. mellonella larval immune system that underpin its use as an alternative infection model, and provide an updated overview of the state of the art of research with G. mellonella infection models to study bacterial virulence, and in the evaluation of antimicrobial efficacy. Emphasis is given to virulence studies with relevant human and veterinary pathogens, especially Escherichia coli and bacteria of the ESKAPE group. In addition, we make practical recommendations for larval rearing and testing, and overcoming potential limitations of the use of the model, which facilitate intra- and interlaboratory reproducibility.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/pathogenicity , Bacterial Infections/immunology , Bacterial Infections/microbiology , Moths/immunology , Moths/microbiology , Virulence , Animals , Bacteria/drug effects , Bacterial Infections/drug therapy , Disease Models, Animal , Humans , Larva/immunology , Larva/microbiology , Reproducibility of Results
10.
Int J Genomics ; 2020: 9354204, 2020.
Article in English | MEDLINE | ID: mdl-32149072

ABSTRACT

Actinobacillus pleuropneumoniae is the etiologic agent of porcine pleuropneumonia. Currently, there are 18 different serotypes; the serotype 8 is the most widely distributed in the United States, Canada, United Kingdom, and southeastern Brazil. In this study, genomes of seven A. pleuropneumoniae serotype 8 clinical isolates were compared to the other genomes of twelve serotypes. The analyses of serotype 8 genomes resulted in a set of 2352 protein-coding sequences. Of these sequences, 76.6% are present in all serotypes, 18.5% are shared with some serotypes, and 4.9% were differential. This differential portion was characterized as a series of hypothetical and regulatory protein sequences: mobile element sequence. Synteny analysis demonstrated possible events of gene recombination and acquisition by horizontal gene transfer (HGT) in this species. A total of 30 sequences related to prophages were identified in the genomes. These sequences represented 0.3 to 3.5% of the genome of the strains analyzed, and 16 of them contained complete prophages. Similarity analysis between complete prophage sequences evidenced a possible HGT with species belonging to the family Pasteurellaceae. Thus, mobile genetic elements, such as prophages, are important components of the differential portion of the A. pleuropneumoniae genome and demonstrate a central role in the evolution of the species. This study represents the first study done to understand the genome of A. pleuropneumoniae serotype 8.

11.
Front Microbiol ; 9: 2489, 2018.
Article in English | MEDLINE | ID: mdl-30405558

ABSTRACT

Evidence of plasmids carrying the tetracycline resistance gene, tet(B), was found in the previously reported whole genome sequences of 14 United Kingdom, and 4 Brazilian, isolates of Actinobacillus pleuropneumoniae. Isolation and sequencing of selected plasmids, combined with comparative sequence analysis, indicated that the four Brazilian isolates all harbor plasmids that are nearly identical to pB1001, a plasmid previously found in Pasteurella multocida isolates from Spain. Of the United Kingdom isolates, 13/14 harbor plasmids that are (almost) identical to pTetHS016 from Haemophilus parasuis. The remaining United Kingdom isolate, MIDG3362, harbors a 12666 bp plasmid that shares extensive regions of similarity with pOV from P. multocida (which carries blaROB-1 , sul2, and strAB genes), as well as with pTetHS016. The newly identified multi-resistance plasmid, pM3362MDR, appears to have arisen through illegitimate recombination of pTetHS016 into the stop codon of the truncated strB gene in a pOV-like plasmid. All of the tet(B)-carrying plasmids studied were capable of replicating in Escherichia coli, and predicted origins of replication were identified. A putative origin of transfer (oriT) sequence with similar secondary structure and a nic-site almost identical to that of RP4 was also identified in these plasmids, however, attempts to mobilize them from an RP4-encoding E. coli donor strain were not successful, indicating that specific conjugation machinery may be required.

12.
Vet Microbiol ; 204: 129-132, 2017 May.
Article in English | MEDLINE | ID: mdl-28532791

ABSTRACT

A small (3.9kb) plasmid (p518), conferring resistance to florfenicol (MIC >8µg/mL) and chloramphenicol (MIC >8µg/mL) was isolated from an Actinobacillus pleuropneumoniae clinical isolate from Southeastern Brazil. To date, this is the smallest florfenicol resistance plasmid isolated from a member of the Pasteurellaceae. The complete nucleotide of this plasmid revealed a unique gene arrangement compared to previously reported florfenicol resistance plasmids found in other members of the Pasteurellaceae. In addition to the floR gene and a lysR gene, common to various florfenicol resistance plasmids, p518 also encodes strA and a partial strB sequence. An origin of replication (oriV) similar to that in the broad host range plasmid, pLS88, was identified in p518, and transformation into Escherichia coli MFDpir confirmed the ability to replicate in other species. Mobilisation genes appear to have been lost, with only a partial mobC sequence remaining, and attempts to transfer p518 from a conjugal donor strain (E. coli MFDpir) were not successful, suggesting this plasmid is not mobilisable. Similarly, attempts to transfer p518 into a competent A. pleuropneumoniae strain, MIDG2331, by natural transformation were also not successful. These results suggest that p518 may be only transferred by vertical descent.


Subject(s)
Actinobacillus pleuropneumoniae/genetics , Plasmids/genetics , Actinobacillus pleuropneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Gene Expression Regulation, Bacterial/physiology , Genome, Bacterial , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...